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Abstract Reactivation of KRAS signaling in
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TUSC2 overcomes AR resistance by inducing

antitumor immunity in a Humanized Mouse Model
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Fig 2. Development of sotorasib acquired resistant isogenic cell lines. A) H23AR and
H358AR cell lines with acquired resistance to sotorasib were developed which showed >200
fold resistance to their sensitive counterparts; B) sensitivity tested to adagrasib; C) Sensitivity
to opnurasib
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Fig 3. Development of in-vivo sotorasib resistant H358AR CDX and H23AR xenograft
tumors. A) Xenograft tumors were generated from isogeneic H23AR cells and tumors were
treated with sotorasib and the antitumor effect was compared; B) H358AR CDX was
developed from H358 sensitive tumors by prolonged treatment with sotorasib for three
passages to generate H358AR CDX (G3); C) G3 H358AR CDXs were reimplanted and
treated with sotorasib to confirm sotorasib resistance in H358AR CDXs. * means p < 0.05, **
means p<0.005, and *** means p < 0.0005
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Fig 5. TUSC2 inhibited colony formation and induced apoptosis in resistant cells. A)
Mode of action of TUSC2; B) Transient transfection of TUSC2 in AR cells; C) Colony
formation assay on stably TUSC2 transfected AR cells; D-F) Apoptosis of acquired resistant
H23AR and H358AR cells after TUSC2 transfection.
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Fig 6. Antitumor effect of TUSC2 gene therapy on H23AR xenografts and TC314AR
PDXs. A) Treatment strategy for H23AR model; B) Combination effects on H23AR xenograft
tumors; C) Individual mouse response to treatments; D) Treatment strategy for TC314AR
PDXs; E) Antitumor effect of TUSCZ2, sotorasib and their combination; F) Percentage of
changes in tumor volume after treatment; G) Individual mouse response to treatments. *
means p < 0.05, ** means p<0.005, and *** means p < 0.0005

Fig 7. The antitumor immune response of TUSC2 on TC314AR PDXs in
humanized mice. A) experimental strategy; B) Humanization status before PDXs
implantation; C) Antitumor effect of TUSC2, sotorasib (AMG510) and its
combination; D) Individual mouse response towards treatment; E) Tumor
microenvironment (TME) analysis in humanized mice: (upper panel) effect on
human CD45, CD3 T, CD4 T, CD8 T, Treg; (middle panel) effect on human NK,
PD1+CD3 T, PD1+CD8 T, PD1+NK, Effector memory CD3 & CD8 T cells; (bottom
panel) effect on human MDSC, DC, M1 & M2 MQ, Residential memory CD3 T and
residential memory NK cells. * means p < 0.05, ** means p<0.005, and *** means p
< 0.0005

Conclusions

« Sotorasib-resistant patient-derived xenografts (PDX) and cell line-
derived xenografts (CDX) were developed, showing no antitumor
effect of sotorasib.

* Two isogeneic acquired resistant NSCLC cell lines were generated
and both AR cell lines showed >100-fold resistance over sensitive
counterparts

* No additional KRAS mutation was found; instead reactivation of the
KRAS pathway and upregulation of PISK-AKT-mTOR signaling were
found to be the main mechanisms of acquired resistance.

* Restoration of TUSC2, a multipotent tumor suppressor, by transient
transfection significantly reduced colonly formation and induced
apoptosis in acquired resistant cells

* Robust antitumor activity was found on acquired resistant H23AR
xenograft tumors when tumors were treated with guaratusugene
ozeplasmid, a lipoplex gene therapy containing the TUSC2 gene

« TUSC2 gene therapy also showed a synergistic antitumor effect on
acquired resistant TC314AR PDX tumors when PDXs are treated
with TUSC2 and sotorasib combination

« quaratusugene ozeplasmid exhibited a strong antitumor effect on
TC314AR PDXs which was significantly superior to sotorasib
treatment in humanized mice

« TUSC2 generated a strong antitumor immune response in TC314AR
PDXs in humanized mice which was associated with significantly
Increased infiltration of human CD3, CD4, cytotoxic T, NK cells and
Inhibition of human regulatory T cells

« PD1 expressing T and NK cells were significantly downregulated
whereas effector memory CD3 and CD8 T cells were markedly
Increased by TUSC2 treatment.

« TUSC2 aactivated innate immunity by enhanced infiltration of DC
and M1 macrophages with significant inhibition of MDSC and M2
macrophages.
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